Материальный баланс. Методы решения задач фильтрации газа с помощью уравнения материального баланса - реферат Уравнение материального баланса

При разработке газоконденсатной залежи в пласте при снижении Р ПЛ до Р Р в пласте выпадает конденсат. Уравнение материального баланса имеет вид:

т.е. начальная масса М Н газоконденсатной смеси в пласте равна сумме текущей массы газоконденсатной смеси в пласте М(t ) , массы выпавшего в пласт сырого конденсата к моменту времени t – М К (t ) и массы добытого М q (t ) пластового газа.

В случае газового режима уравнение материального баланса для газоконденсатной залежи можно записать в виде:

где:
– соответственно начальный газонасыщенный поровый объем

залежи и объем пор пласта, занятых выпавшим сырым конденсатом

к моменту времени t ,

–начальное и текущее среднее пластовое давление,

–коэффициенты сверхсжимаемости газоконденсатной смеси при Т ПЛ и

соответственно при Р Н и
,

–соответствующая плотность газа начального и текущего состава

приведена к Р АТ и Т О ,

–плотность выпавшего в пласт сырого конденсата на момент

времени t , приведенное к давлению
иТ ПЛ .

При определении массы добытого пластового газа на момент времени t используется следующее рекуррентное соотношение:

(возвратные последовательности, каждый следующий член которых, начиная с некоторого, выражается по определенному правилу через предыдущие)

где:
- масса добытого пластового газа на момент времениt – Δ t ,

Q q .С.Г. * (t - Δ t ) – добытое количество сухого газа на момент времени t и t – Δ t

соответственно, приведённое к Р АТ и Т О .

Δ t – шаг во времени

–объемный коэффициент сухого газа (коэффициент перевода газа в

пластовый газ)

Зависимость

,
,
, и
наиболее достоверно определяются в результате экспериментальных исследований с использованием бомбыPVT .

Часто используются зависимости по данным Рейтенбаха Г.Р., полученные для Вуктыльского месторождения, (Р Н = 37 МПа, Р Р = 33 МПа, конденсат содержит (500 см 3 /м 3) которые имеют вид:

1 – ρ к 2 - 1 – z 2 - β

Деформационные изменения в продуктивном пласте.

При разработке залежей газа приуроченных к карбонатным коллекторам, мы сталкиваемся с существенным изменением проницаемости и пористости коллектора при наличии трещиноватости.

Лабораторные исследования показали, что при снижении внутрипластового давления Р ПЛ коэффициенты пористости и проницаемости уменьшаются.

Экспоненциальная зависимость коэффициента пористости m от давления имеет вид:

где: – коэффициент пористости соответствующий давлениямР Н и Р ,

–коэффициент сжимаемости пор, 1/МПа .

Уравнение материального баланса для газовой залежи с деформируемым коллектором при допущении Z = 1 имеет вид:

(уравнение используется при Z ≥ 0,8 )

При деформации пласта – коллектора коэффициент газонасыщенности изменяется за счет уменьшения порового объема и расширения остаточной воды, т.е. текущий коэффициент газонасыщенности является функцией давления
.

Тогда уравнение материального баланса записывается в виде:

где:
– коэффициент объемной упругости жидкости

В

лияние деформации пласта – коллектора на зависимость
показано на графике.

1– зависимость при недеформированном коллекторе.

2– зависимость для деформируемого коллектора.

Вследствие деформации продуктивного коллектора кривая (2) располагается выше соответствующей кривой зависимости при отсутствии деформации (1), что объясняется уменьшением во времени порового объема залежи.

При = 0 линии (1) и (2) сходятся в одну точку, т.к. независимо от деформации пласта, добытое количество газа к моменту, когда= 0 должно быть равно начальным запасом газа в пласте.

Кристаллизация с удалением части растворителя за счет выпаривания влаги (изогидрическая) . Введем обозначения: тпер, ткр, тм - массы исходного пересыщенного раствора, кристаллов и маточного (межкристального) раствора, кг (кг/с); впер, вм - массовая доля сухих веществ в пересыщенном и маточном...
  • Материальный и тепловой балансы процессов горения
    Горение, как и любой химический процесс, подчиняется основным законам природы (например, закону сохранения вещества и энергии), что позволяет теоретически оценить количество окислителя, необходимого для горения веществ и материалов; состав и объем продуктов горения; количество выделившегося тепла; температуру...
    (ТЕОРИЯ ГОРЕНИЯ И ВЗРЫВА)
  • Материальный баланс.
    По закону сохранения массы количество поступающих веществ ^GH должно быть равно количеству веществ GK , получаемых после завершения процесса, т.е. без учета потерь: Однако в практических условиях неизбежны потери веществ (?Gn), поэтому Материальный баланс составляют как для отдельного процесса, так и...
    (ПРОЦЕССЫ И АППАРАТЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ)
  • Материальный баланс.
    Общее количество выпаренной влаги определяется по уравнению (6.8). На основе уравнения (6.7) могут быть рассчитаны концентрации растворов между корпусами. Например, для двухкорпусного выпарного аппарата концентрация после первого корпуса определяется по уравнению где Wi - расход выпаренной влаги...
    (ПРОЦЕССЫ И АППАРАТЫ ПИЩЕВЫХ ПРОИЗВОДСТВ)
  • Теплообмен в замкнутой системе. Уравнение теплового баланса
    Если систему из нескольких тел изолировать и создать условия для их теплообмена между собой, то установится тепловое равновесие. В результате теплообмена тела будут иметь одинаковую температуру. Этот факт является опытным и наблюдается во всех случаях теплообмена (иногда его рассматривают как нулевой...
    (МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА)
  • Тепловой баланс при сварке
    Основная доля тепловой энергии при точечной, рельефной и шовной сварке генерируется за счет действия объемно распределенного источника. Роль второстепенных источников в обшем тепловом балансе считается незначительной. Их доля не превышает порядка 10% от всей генерируемой энергии на участке между электродами,...
    (ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ: ТЕОРИЯ И ТЕХНОЛОГИЯ КОНТАКТНОЙ СВАРКИ)
  • (ЭЛЕКТРИЧЕСКИЕ И ЭЛЕКТРОННЫЕ АППАРАТЫ)
  • Развитие теоретических основ проектирования и разработки газовых и газоконденсатных месторождений можно разделить на 4 этапа.

    В течении I этапа (дореволюционные годы и первые годы Советской власти) скважины бурили на случайно открытых газовых месторождениях в непосредственной близости от потребителя газа. Бурение последующих скважин проводилось по соседству с предыдущими, без предварительной разведки, в объеме, необходимом для подачи нужного количества газа потребителю. (Мельниковское, Мелитонольское месторождения в Ставрополье, и месторождение Дагестанские огни).

    II этап пришел на смену кустарным методам разработки. На этом этапе применялись чисто эмпирические методы разработки газовых месторождений с механическим распространением на них практики разработки нефтяных месторождений, а так же методов разработки газовых месторождений США.

    III этап характеризуется созданием и внедрением научно обоснованных методов эксплуатации газовых месторождений. Эта работа проводилась в Московском нефтяном институте им. Н.М. Губкина.

    На основе полученных результатов наряду с проведением дальнейших теоретических исследований были выполнены и внедрены первые научно обоснованные проекты разработки газовых месторождений треста Куйбышевгаз и в дальнейшем и на др. месторождениях (Шебелинсского, Северо – Ставропольского, Газлинского и др.)

    В результате научно – исследовательских работ III-го этапа в развитии теории разработки газовых месторождений были достигнуты значительные успехи. Созданы газодинамические методы расчета изменения во времени потребного числа газовых скважин, пластовых, забойных и устьевых давлений, приближенные методы расчета продвижения контурных или подошвенных вод при разработке месторождений в условиях водонапорного режима.

    Вместо господствовавшего ранее режима постоянного процента отбора:

    где: % - постоянный процент отбора,

    q РГ – рабочий дебит газовой скважины,

    q СКВ – дебит фонтанирующей газовой скважины.

    считавшегося единственно рациональным технологическим режимом эксплуатации газовых скважин, обоснованы и внедрены в практику проектирования новые технологические режимы. К их числу относится режимы поддержания постоянного максимально допустимого градиента давления на забое скважины или постоянной депрессии при недостаточной устойчивости коллекторов, режим предельного безводного дебита газовых скважин при наличии подошвенной воды.

    Исследования фильтрации газа к несовершенным скважинам в условиях нарушения закона Дарси привели к созданию и повсеместному внедрению новой методики обработки и интерпретации результатов исследования газовых скважин. Появились методы исследования скважин при нестационарных режимах фильтрации газа.

    В результате выполнения ряда проектов разработки газовых месторождений, накопился значительный опыт комплексного применения методов геологии, геофизики, подземной газогидродинамики и отраслевой экономики.

    На основе геолого-геофизических исследований устанавливается геологическое строение газовой залежи, составляется представление о пластовой водонапорной системе, возможном режиме газовой залежи. По данным испытания скважин определяются параметры пласта.

    В результате газогидродинамических расчетов определяется изменение во времени необходимого числа скважин для выполнения плана добычи газа. На основе анализа технико-экономических показателей различных вариантов разработки выбирается наилучший из них.

    В начале 60 – х годов теория проектирования и разработки месторождений природных газов вступает в IV этап своего развития. Особенностью этого этапа является комплексное применение в практике проектирования, анализа и определения перспектив разработки, газовых и газоконденсатных месторождений методов геологии, геофизики, в том числе ядерной геофизики, подземной газогидродинамики, техники и технологии добычи газа, появляется стремление к использованию возможностей современных быстродействующих электронных вычислительных и аналоговых машин. При этом главной задачей является нахождение при помощи ЭВМ такого варианта разработки газового (газоконденсатного) месторождения и обустройства промысла, который отличался бы оптимальными технико-экономическими показателями.

    Основанием для получения уравнения реактора любого типа является материальный баланс, составленный по одному из компонентов реакционной смеси.

    Составим такой баланс по исходному реагенту A при проведении простой необратимой реакции A R .

    В общем виде уравнение материального баланса:

    где В А (пр) – количество реагента А , поступающего в единицу времени в тот реакционный объем, для которого составляется баланс;

    В А (расх) – количество реагента А , расходуемого в единицу времени в реакционном объеме.

    Учитывая, что поступивший в реактор реагент А расходуется в трех направлениях, можно записать:

    где В А (х.р) – количество реагента А , вступающее в реакционном объеме в химическую реакцию в единицу времени;

    В А (ст) – сток реагента А , т.е. количество реагента А , выходящее из реакционного объема в единицу времени;

    В А (нак) – накопление реагента А , т.е. количество реагента А , остающееся в реакционном объеме в неизмененном виде в единицу времени.

    С учетом уравнения (3) уравнение (2) записывается в виде:

    Разность между В А (пр) и В А (ст) представляет собой количество реагента А , переносимое конвективным потоком В А(конв) :

    Принимая это во внимание, уравнение (4) можно записать:

    В каждом конкретном случае уравнение материального баланса принимает различную форму.

    Баланс может быть составлен

    v для единицы объема реакционной массы,

    v для бесконечно малого (элементарного) объема,

    v а также реактора в целом.

    При этом можно рассчитывать материальные потоки,

    · проходящие через объем за единицу времени,

    · либо относить эти потоки к 1 моль исходного реагента или продукта.

    В общем случае , когда концентрация реагента непостоянна в различных точках реактора или непостоянна во времени , материальный баланс составляют в дифференциальной форме для элементарного объема реактора :

    где C A – концентрация реагента А в реакционной смеси;

    x , y , z – пространственные координаты;

    –составляющие скорости потока;

    D – коэффициент молекулярной и конвективной диффузии;

    r A – скорость химической реакции.

    Левая часть уравнения (7) характеризует общее изменение концентрации исходного вещества во времени в элементарном объеме, для которого составляется материальный баланс. Это – накопление вещества А , которому соответствует величина В А (нак) в уравнении (6).

    Первая группа членов правой части уравнения (7) отражает А вследствие переноса его реакционной массой в направлении, совпадающем с направлением потока .

    Вторая группа членов правой части уравнения (7) отражает изменение концентрации реагента А в элементарном объеме в результате переноса его путем диффузии.


    Указанные две группы правой части уравнения характеризуют суммарный перенос вещества в движущейся среде путем конвекции и диффузии. В уравнении (6) им соответствует величина В А(конв) такой суммарный перенос вещества называют конвективным массообменом, или конвективной диффузией).

    И, наконец, член r A показывает изменение концентрации реагента А в элементарном объеме за счет химической реакции . Ему в уравнении (6) соответствует величина В А (х.р.

    Применительно к типу реактора и режиму его работы дифференциальное уравнение материального баланса (7) может быть преобразовано, что облегчает его решение.

    В том случае, когда параметры процесса постоянны во всем объеме реактора и во времени , нет необходимости составлять баланс в дифференциальной форме. Баланс составляют в конечных величинах , взяв разность значений параметров на входе в реактор и на выходе из него.

    Все процессы, протекающие в химических реакторах, подразделяют на:

    Стационарные (установившиеся);

    Нестационарные (неустановившиеся).

    К стационарным относят процессы, при которых в системе или в рассматриваемом элементарном объеме реакционной смеси параметры процесса (например, концентрация реагента А, температура и т.д.) не изменяются во времени, поэтому в реакторах отсутствует накопление вещества (или тепла) и производная от параметра по времени равна нулю.

    При нестационарных режимах параметры непостоянны во времени и всегда происходит накопление вещества (тепла).

    Материальный баланс является основой всех технологических расчетов. По данным материального баланса определяются размеры и число необходимых аппаратов, расход сырья и вспомогательных продуктов, вычисляются расходные коэффициенты по сырью, выявляются отходы производства.

    Материальный баланс представляет вещественное выражение закона сохранения массы применительно к химико-технологическому процессу: масса веществ, поступивших на технологическую операцию (приход) равна массе веществ, полученных в этой операции (расход), что записывается в виде уравнения баланса Σm приход = Σm расход.

    Статьями прихода и расхода в материальном балансе являются массы полезного компонента сырья (m 1), примесей в сырье (m 2), целевого продукта (m 3), побочных продуктов(m 4), отходов производства (m 5) и потерь (m 6), поступивших в производство или на данную операцию:

    m 1 + m 2 = m 3 + m 4 + m 5 + m 6

    Материальный баланс составляется на единицу времени (час), на единицу выпускной продукции, на один производственный поток или на мощность производства в целом.

    Таблица материального баланса для непрерывных процессов размещается на принципиальной технологической схеме внизу или на отдельных листах в следующем виде:

    Таблица 3.1 - Материальный баланс непрерывного процесса

    т.е. для каждого потока указывается его состав, расход в кг/час и нм 3 /час. Номера потоков проставляются на технологической схеме.

    Для периодических процессов материальный баланс составляется в виде таблицы 3.2.

    Таблица 3.2 – Материальный баланс периодического процесса

    На основании общего материального баланса производства определяются расходные коэффициенты сырья и вспомогательных материалов, необходимые для оценки экономической эффективности производства. Расходные коэффициенты сырья и вспомогательных материалов следует проводить в виде таблицы 3.3.

    Таблица 3.3 – Расходные коэффициенты сырья и вспомогательных материалов

    При составлении материальных балансов в качестве исходных данных могут быть заданы следующие величины.

    1. Годовая производительность по готовому продукту в т/год, которую для расчета надо перевести в кг/ч (приняв во внимание фактическое число часов работы установки в год).

    2. Состав исходного сырья и готового продукта. Если сырьё имеет очень сложный состав, то для расчета материального баланса можно принять условный, но вполне определенный состав. Соответственно принятому составу сырья рассчитывается состав продуктов реакции.

    3. Основные технологические параметры (температура, давление, мольное или массовое соотношение между реагентами), данные по конверсии и селективности. Конверсию и селективность можно принять на основе литературных и производственных данных или данных лабораторных исследований.

    4. Потери на каждой стадии процесса. Технологические потери возникают вследствие уноса части продуктов реакции с абгазами или с выводимыми потоками за счет частичного растворения, неполного извлечения в массообменных процессах (абсорбции, экстракции, ректификации и т.п.). Данные потери задаются или их значения выявляются на производственной практике. Если в проекте заложены новые процессы и аппараты, то необходимо провести предварительный расчет этих процессов для нахождения указанных величин.

    Все недостающие данные для составления материального баланса находят расчетным путем, основываясь на закономерностях химико-технологических процессов.

    При выполнении расчетов по составлению материальных балансов необходимо ясно представлять сущность процессов, протекающих на различных стадиях в том или ином аппарате. Целесообразно придерживаться следующего порядка:

    1. Составить технологическую схему процесса (без вспомогательного оборудования – насосов, компрессоров и т.д.) с нанесением всех аппаратов, где происходят изменения составов и величин материальных потоков.

    2. Составить уравнения химических реакций, протекающих в каждом из аппаратов, где имеет место химическое превращение. На их основе, если известны количество и состав выходящих из аппарата потоков, можно рассчитать необходимое количество исходных продуктов. И наоборот, если известны состав и количество исходных продуктов, то зная конверсию и селективность процесса, можно рассчитать состав и количество потока, выходящего из реакционного узла.

    3. Нанести на схему все известные числовые данные о количественном и качественном составе потоков.

    4. Установить, какие недостающие величины подлежат определению расчетным путем, и выяснить, какие математические соотношения надо составить для нахождения неизвестных величин.

    5. Располагая всеми нужными соотношениями между известными и неизвестными величинами, а также необходимыми справочными данными, приступают непосредственно к расчету материальных балансов.

    Ниже приводится порядок расчета материального баланса для наиболее общих случаев.

    Пример 1. Известно:

    ─ производительность по готовому продукту, т/год;

    ─ качество сырья и состав готового продукта, % масс.;

    ─ степень извлечения или коэффициент выхода готового продукта на всех стадиях процесса;

    ─ составы всех выходящих с установок производства потоков.

    Материальный баланс в этом случае составляется в следующей последовательности:

    1. Определяется в готовом продукте содержание целевого компонента и других примесей (кг/ч).

    2. Зная потери целевого продукта на каждой стадии (Р i) определяют, какое количество целевого компонента должно содержаться в исходной реакционной массе:

    С р.м. = С пр (100 + Σ % Р i),

    где С р.м. ─ содержание целевого компонента в исходной реакционной массе;

    % Р i ─ доля потери целевого компонента на каждой стадии;

    п ─ число стадий процесса.

    Пример 2. Известно:

    ─ производительность по готовому продукту в т/год;

    ─ показатели процесса ─ селективность, конверсия, соотношение исходных компонентов;

    ─ состав исходного сырья.

    В этом случае удобно производить расчет материального баланса на

    1000 кг перерабатываемого сырья. Расчет производится в следующей последовательности:

    1. На основании данных по составу сырья, конверсии, селективности, соотношению исходных реагентов, по уравнениям реакций определяют состав и величину потока реакционной массы.

    2. Проводят расчеты по определению величины потоков, входящих и выходящих из аппаратов, с учетом содержания целевого продукта в выходящих потоках.

    3. Определяют выход готового продукта на 1000 кг перерабатываемого сырья. Затем определяют коэффициент пересчета на заданную производительность по готовому продукту по формуле:

    где q з ─ заданная производительность по готовому продукту;

    q ─ количество готового продукта, полученного при переработке 1000 кг сырья.

    4. Составляется общий и постадийный материальный баланс производства с учетом коэффициента пересчета.

    Пример 3. Известно:

    ─ производительность по готовому продукту, содержание в нем целевого компонента;

    ─ основные показатели процесса ─ конверсия, селективность, условия процесса, соотношения исходных компонентов.

    В этом случае отсутствуют данные по степени извлечения основных компонентов, составу промежуточных потоков на стадиях разделения продуктов реакции.

    Для составления материального баланса производства удобно проводить расчет на 1000 кг сырья или одного из исходных компонентов в последовательности, изложенной во втором примере.

    Однако в данном случае для нахождения значений концентраций компонента в промежуточных потоках необходимо провести предварительный расчет аппаратов (конденсатора, сепаратора, ректификационной колонны и т.д.). Для этого задаются условиями работы аппарата (по производственным или литературным данным) и зная состав и количество потока, поступающего в аппарат, рассчитывают состав и количество потока, выходящего из аппарата и наоборот. При этом необходимо подобрать такие условия работы аппарата, которые обеспечивали бы максимальную степень извлечения полезного компонента, были бы экономически выгодными и при этом обеспечивались бы требования к качеству готового продукта и к нормам выбросов в атмосферу или в сточные воды.

    Таким образом, общий материальный баланс производства (установки) включает только потоки, входящие и выходящие с производства, а материальные балансы аппаратов включают характеристики входящих и выходящих потоков данного аппарата.

    В расчетно-пояснительной записке дипломного проекта при оформлении результатов расчета материального баланса должны быть приведены все имеющие место в процессе уравнения химических реакций и представлены проведенные по ним расчеты.

    В технологии органических веществ часто используются схемы с рециркуляцией потоков. В этом случае составление материального баланса установки усложняется. Главной задачей расчета с рециркуляцией является определение по заданному количеству перерабатываемого сырья выхода целевого продукта и суммарных загрузок каждого аппарата.

    Простейшая схема такой установки имеет вид:


    I ─ блок смешения; II ─ реакторный блок; III ─ блок разделения продуктов реакции.

    q 1 ─ поток свежего сырья;

    q 4 ─ поток готового продукта;

    q 5 ─ газы продувки;

    q 6 ─ поток рециркуляции.

    Рисунок 3.1 ─ Схема процесса с рециркуляцией и отдувкой части потока

    Исходя из заданной производительности по готовому продукту, всегда можно определить, сколько его должно содержаться в потоке q 4 , выходящем из реактора. Из данных по конверсии и селективности, которые бывают заданы при проектировании, и используя уравнения химических реакций, можно определить величину потока q 3 и его компонентный состав (содержание основных и побочных продуктов).

    Зная количество и состав потока q 3 , можно определить количество и состав потока q 2 , используя уравнения химических реакций. При расчете потока q 2 необходимо принять во внимание содержание в нем инертов, концентрация которых обычно задается или регламентируется исходя из технологических соображений. Количество инертов должно быть учтено и в последующих потоках.

    Величина потока q 4 и его состав определены производительностью установки по готовому продукту и требованиями к нему, которые, как правило, задаются.

    Для составления материального баланса всей установки и определения нагрузки на отдельные аппараты необходимо определить величину потоков q 1 , q 4 , q 6 и состав потока q 4 , q 6 (состав q 1 обычно задается при проектировании или определяется в дальнейшем с учетом конверсии и селективности процесса).

    Методы составления и расчета материальных балансов приведены в литературе .